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I Introduction

Ststement of Problem

The purpose of this paper 1is to
determine explicit expressions enabling
calculation of the performance of the
recently-introduced open-strip UHF
transmission line, now rapidly coming into
extensive use,

Importance of the Problem

A gajor problem stressed in the White
Paper,?8 "The Fundamental Research
Problems of Telecommunications" issued in
1948 by the Telecommunications Division
of the British Post O0ffice is that of
obtaining wire transmission lines of
better operating performance in those
portions of the frequency spectrum devoted
to UHF television, radio-relay, radar and
like uses than was then available. The
same need was, of course, recognized
slmultaneously in other countries as well.
In consequence of the pressure of such
need, intense activity in Great Britailn,
the United States,? 329354784911 926927929.35
Germany,*? and other countries resulted
in rapid development of several different
types of wire-lines particularly useful in
the UHF region.

Among those developed in this country
the so-called strip transmission lines
produced by the Federal Telecommunications
Laboratories of the International
Telephone and Telegraph Corporation have
proved particularly useful for microwave
work. Their low-loss characteristics,
compactness of structure, eass of
manufacture, and resulting reasonableness
of cost render them particularly suited
to low-cost mass-production techniques,
especlally for within-chassis microwave
wiring where size reduction is important.

Strip-transmission lines comprise
three major types: closed-strip, open-
strip, and wire-above-ground plane, Of
these, the open-strip line is the easlest
to manufacture, its configuration being
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such that printed-circult procedures

or stripping of metal-plastic-metal
laminations is easily applicable. 1In
consequence, the open-gtrip line is much
favored for low-cost general-purpose use
where the somewhat larger radiation
losses, than the closed-strip line, can be
tolerated. A cross-section view of an
open-strip is shown in Fig. 1-1.

Now by well-known theory,6?10313
determination of the electrical parameters
prerequisite to calculation of the
performance of a high-frequeney
communication line reduces— essentially—
to determination of the associated
capacitance, surface charge densities, and
electric field distribution by use of
basic electromagnetic theory. Now,
although the dielectric slab separating
the metal-strip conductors doces not extend
throughout all space, it is to be
anticipated that, because of the large
ratios of strip widths to strip spacing,
essentially all of the surface charges on
each of the two strips concentrates on the
ad jacent 1nner surfaces, whence in turn
the electric field is essentially
concentrated in the dielectric slab between
the strips; and thus the capacitance,
surface charge densities, and electric
field distribution are essentially the
same as though the whole of space is
filled homogeneously with dielectric
material. And in fact, such conjecture
is confirmed by exhaustive experimental
data stemming from an intensive study!’?
of this probableness. On such basis, then,
it ought to prove possible to effeect
determination of the mentioned desired
electrical quantities enabling
caleulatlion of the operating performance
of the open-strip line by well-knoun
electromagnetic theory,

In principle such is possible. In
actuality, explicit determination of the
desired quantities for unequal-conductor-
wldths, open-strip lines can be expected
to be extremely difficult to effect. 1In
support of such remark we need only reeall
that explicit expression of these
quantities for the geometrically-simpler,
equal-conductor-widths, open strip-line,
in form suited to engineering computation
is avallable only through the
chronologically successive efforts of such
gifted workers in electrical theory as
Maxwell,** Thomson,2?* Michell,!’

Bromwich,’ Love,'? and Moulton,*? each of
whom lmproved on and advanced the work of



his predecessors. The principal
difficulty stems, of course, from the
elliptic-function analysis required to
obtain expression of the desired
quantities. In consequence, it is not
"surprising that up to this time an
explicit determination of the desired
electrical gquantities for the much more
analytically-difficult problem of the
unegual-conductor-widths open-strip line
has not been effected.

Accordingly, it is for such reason that
in their paper devoted to development of
equations and charts enabling ready
calculation of the operating performance
of strip transmission lines Assadourian
and Rimai? were, perforce obliged to use
solutions for the two limiting cases of
the open-strip line; namely, that where
the two conductors are of equal widths
and that where one conductor is of finite
width (equal to that of the smaller
conductor width of an actual open-strip
line) and the other 1is of infinite width.
Such calctlation results, however, not in
the desired actual determination of line
performance, but of rather widely-
separated upper and lower bounds to the
performance. But more than this,
Assadourian and Rimal, evidently lacking
knowledge of the avallable rigorous
solutions for these two cases used certain
approximate equations which had been
derived earlier by Maxwell and '
J.J. Thomson prior to the first
formulation of the exact solution by
Michell in 189%, These approximate
equations yield values some 25 per cent
greater than the correect values.
Accordingly, they arrived at performance
calculation not only between loose limits,
but these limits are some 25 per cent
greater than the -correct values.

Obviously, therefore, what is most
needed are explicit correct solutions
enabling accurate calculations of the
actual performance, The determination of
precisely such expressions and
1llustration of their application through
numerical example comprises the essential
content of this paper.

Method and Scope of Solution

In Fig. 1-2 each of the two line
segments ls the cross-section of a
conductor of the open=-strip line, hence is
the cross-section of a cylindrical
equipotential surface. Accordingly,
determination of the capacitance, surface
charge denslities and electric fileld
distribution is a two~dimensional problem.
Further, in view of the mirror symmetry
of the cross-section in a plane
perpendicular to and bisecting the
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conductors, we need only determine
explicitly the field in one-half of the
line, that in the other half being
obtained by use of the mentioned symmetry.
In view of this symmetry of field, and in
that the lines CE and GA are flux lines,
the strip-line can be considered as the
conjunction of two strip-lines of "half-
section" typified by the "polygon" ABCEFG.
The conductors AC and EG of this half
section are equipotential lines, the lines
CE and GA are flux lines bounding the
electric field.

Now by well-known theory,
determination of the desired electrical
quantities reduces to determination of the
analytic function which maps the half-
section of the strip-line on a rectangle
in such fashion that equipotential lines
AC and EG go into two opposite sides of
the rectangle and the flux lines CE and
GA go into the other two sides, This
mapping can be done in two steps: mapping
the half-section on an upper half-plane
and subsequent mapping of the upper half-
plane on the rectangle., Now the function
mapping a rectangle on an upper half-plane
is a well-known function. Accordingly,
the mapping problsm reduces to mapping of
the half-section on the half-plane. In
turn, however, the function mapping a
rectlilinear polygon such as the half-
gsection on an upper half-plane is
furnished by the corresponding Schwarz-
Christoffel integral.? This integral is
easily formulated and proves to be an
elliptic integral of the third kind.
such integrals, except those of very
simple Integrands—_not the case here—are
notoriously difficult to integrate.
However, after long and difficult study,
integration was finally accomplished,
yielding a general implicit expression of
the desired complex potential function P
in terms of Jacobian elliptic functions of
the trigonometric and zeta types. This
general expression contains three
arbitrary constants, to be evaluated from
known conditions stemming from the
mapping. By successive, reiterated
substitutions these constants are
evaluated and hence explieit, implicit
expression of the complex potential
function is obtained.

All

The real and imaginary parts of P
furnish the potential function ® and flux
function ¥ characteristizing the electric
field distribution. The negative
gradient of the potential function
evaluated at the surface of the conductors
multiplied by a known constant, yields the
surface charge densities. Accordingly, we
have now to find only the expression for
the capacitance. Effecting this in the
usual fashion from the complex potential
function results in an expression in terms



‘of Jacobian elliptic functions of complex
arguments. Unfortunately, no tables have
been computed for dlrect evaluation of
these functions; 1t 1s necessary to expand
in terms of elliptie functions of real
arguments, thus obtaining a very
complicated expression for the capacitance.
Moreover, as in the case in all solutions
for the capacitance of transmission lines
except those of very simple geometry
wherefor the expression for the complex
potential function can be reverted, the
numerical values of capacitance for open-
strip lines of specified dimensions must
be calculated through use of a repeated
cycle of computation. Since for the open=-
strip line three parameters occur—two
conductor widths and the spacing—the
caleulation required for a specified line
is both very long-drawn and, because of
lack of suitable tables, numerically
difficult to effect. However, the values
of the capacitances of two strip-lines of
specified dimensions have been calculated.
Each of these values falls between the
corresponding correct values for the above
mentioned limiting cases of equal
conductor widths and the widest conductor
considered extended into an infinite plane,
thus providing confirmation of the
correctness of the general analysis and
computation.

The mentioned computational labor
suggests that an alternative, more facile
means of caleculating sufficient values of
capacitance, enabling preparation of a set
of universal curves yielding immediate
determination of the capacitance, and thus
— through multiplication by a known
constant —the charscteristic impedance of
a strip~-line of specified dimensions such
as used in practice, is by use of the
powerful method of subareas, which has
earlier been successfully employed for
ready numerical solution of other long
unsolved difficult problems in
transmission line caleculation,??20721222
By means of this theory, and by the aid
of digital computing equipment, some 18
values of capacitance were calculated and
the desired set of universal curves
plotted therewith.

Confirmative of the correctness of
the subarea calculation in general, these
curves are well distributed between the
correct bounding curves for the previously
mentioned two limiting cases of equal
conductor widths and the widest conductor
.expanded into an infinite plane. Moreover,
subarea caleulation of the two strip-lines
for which capacitances had earlier been
calculated from the exact expression
vields volues in oceantial agreement with
these exact values.

In conclusion, then, we note that the
exact expressions for the fleld

95

distribution and the capacitance and the
set of universal curves obtained by
subarea calculation both furnish solution
of a difficult hitherto unsolved problem
in electromagnetic theory and enable
falrly rapid accurate calculation of the
operating performance of the open-strip
transmission line. ’

II Basic Theory

Inasmuch as the theory of caleculation
of the elctrical parameters of a high-
frequency two-conductor line is well
established in the literature (as in the
book by Jordan,'® and in, especially, the
papers by Bucholz® and by Magnus and
Oberhettingert3?) it suffices in this paper
only to outline the calculation in
sufficient detail to make clear how the
desired parameters of such a line can be
computed.

Computation of Line Paramaters

Let the conductors be directed along
the z-axls. Let ®(x,y) be the associated
electrostatic potential, , Then Eyx = 8®/ex,
Ey = —BQ/ByZQH = (e/p)*" 2 30/3x and
Hy = ~(e/p) g@be. Accordingly, if n
and t designate, respectively, the outward
normal and counterclockwise tangent to a
conductor surface, then E; = (p/e)®Hy. .
In. rationalized units the charge density o
at the surface of a conductor is ¢ = eEj,
By Ampere's law $Hyds = J, where the
integral is taken around the perimeter of
the conductor and J is the enclosed current,
Let the current be assumed—as usual— to0
flow in a sheet of thickness & =(2p fuw)V?,
and let j/6 designate the equivalent
uniform longitudinal current density along
the normal to the surface, such that
J =¢jds. Then §jds = $Hyds, whence
="Ht., Also, J = QHyds = ﬁsm)’f/‘?E‘,nds
95(1}115)}’2_ eEnpds=cQ. Herein, ¢ = (L/ue )y2
‘speed of light and Q is the charge on a
it length of the conductor.

!
z
un
Now the r-m-s power dissipation in a
conductor in a unit length is
(1/2)/(3/8)% av = (1/2)§(3/ )2 s as
(p/28)§3%as = (1/2) qwp/2) %fH3ds

The equivalent resistance R. of the
conductor, defined by W = J2Re/2, 1is

R, = 2W/J?

3°2(pwp/2)LefH%ds
(o)™ Guop /2)%2 gutas
(@)™ Guap/2) V2§02 ae as
= Q72 (ap/2) V2§o2as

W

1t

]



Obviously, the total resistance R of a
wnit length of the line 1is the sum of the
individual conductor resistances.

The attenuation constant is defined
by a = (R/2)(¢/L) ¥?. Since for high-
frequency lines LC = 1/c¢?, we have

o = RCe/2. Finally, the characteristic
impedance Zo = (L 3] Y2 can be written as
Zg = 1/cC.

Accordingly, it follows from
inspection of the expressions for R, a,
and 2%, that if we have knowledge of the
charge density ¢ and capacitance C, we can
immediately calculate the desired values
of R, a, and Z,: Thus, the problem of
caleulation of the parameters of a broad-
band high-frequency line reduces;
essentially, to calculation of o and C—
and these are immediately determined, per
the theory above, 1f the associated
potential ®(x,y) is known. We turn, then,
to consideration of finding this quantity.

Determination of Potential &(x,y)

Now because of the length and
parallelness of the conductors, the
assoclated electric field is the same in
each plane perpendicular to the axes of
the conductors. Accordingly, the problem
of determining ¢(x,y) 1s essentially a
two-dimensional one. Recalling, as
established in Section I, that the field
distribution is to be found on the basis
that the conductors are surrounded by a
uniform nonpermeable medium of dlelectric
constant the same as that of the
dielectric slab between the conductors,
thus a medium of n, = 1 and ep = €4, we
have, from well-known theory, that
determination of the potential function @
is effected by finding that function which:

1. Satisfies Laplace's equation VX
=-0 everywhere in the plane of the cross-
sectiony

2, Is of specified constant values,
say @ and -5, over the perimeters P; and
P, of®the cross-sections of the two
conductors;’

3, Vanishes at infinity except for an
arbitrarily chosen constant, usually taken
as zero.

The analytic difficulties attending
the determination of ® for a group of
conductors of specified geometry are such
that exact solution has been effected for
relatively few conductor shapes and
arrangements—even for the minimum of two
conductors, the case of this paper. For
in this last instance, determination of ¢
depends, essentially, on finding the
function which maps the area of the
z-plane external to the conductor cross-
section on the upper-half of a second
plane, the t-plane, whence in turn this
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upper half-plane is to be mapped, through
use of the well-known function t = sn w,
on a rectangle in yet a third plane, the
w-plane, in such fashion that the
perimeters of the cross~section go into
two opposite sides of the recta2ngle. But,
as 1s well known, explicit determination
of the first mapping function for a
specified geometry 1s usually a difficult
problem: in fact, the mapping functions
are known for only a few of the many
geometrical configurations of technieal
interest., We may note, however, that
when the mapping function providing @
cannot be found rigorously, it 1is yet
possible to approximate ¢ to any desired
degree of accuracy, and thus solve the
electrical problem accordingly, by theory
pertinent to the powerful method of ’
subareas.

Now although we shall have occasion
to use subarea theory to effect a
considerable number of numerical values,
it is possible to obtaln the mapping
function which affords the rigorous
solution of our problem; inasmuch as the
cross-sections of the conductors are line-
segments, the desired function mapping the
area external to the conductors on an
upper half-plane is afforded by the
Schwarz-Christoffel transformation.
Accordingly, we now set out the basis of
this transformation, used in Section III,
to obtain the mapping function underlying
rigorous solution of the problem of this
paper.

The Schwarz-Christoffel Transformation

The conformal transformation which
maps the Interior of any rectilinear
polygon in the z-plane on the upver half
of the t-plane, the perimeter of the
polygon colnclding with the real axis of %,
was advanced independently and more or
less simultaneously by the German
mathematician, H. A, Schwarz, and the
Italian mathematician, E. B. Christoffel.
Since the derivation is given at length in
numerous sources? it suffices here to
;gvance only the transformation proper:

us,

z(t)
= A]t(t-tl)'}’i(t-tg)'pz...(t—tn)'pn'dtﬂa
(2-1)
Here z = x + iy and t are

respectively the variables of the z and
t-planes. Assuming, first, that none of
the images ti of the vertices zi of the
polygon to lie at infinity in the t-plane,
the t4(i = 1, ...y n) are positive or
negative real numbers, such that in
traversing the perimeter of the polygon in
the positive direction (i.e., the interior
of the polygon lying to the left), pyx is
the angle turned through at the ith vertex,



counterclockwlse turning being taken as
positive., Finally, A and B are arbitrary
constants, possibly complex, which
determine respectively the orientation and
location of the polygon in the z=-plane
relative to the x,y axes (Fig. 2-1).

Three of the vertices of the polygon
can be assigned convenientlv-chosen values
of ti on the real axis, provided only that
these points t occur along the real axis
in the same order as the corresponding
vertices occur along the perimeter of the
polygon. In a specific problem it is
usually convenient to do so, thus fixing
the values of A and B.

In that the mapping function z(t) is
a function of its upper limit t, the
transformation (2~1) can also be written
in the form

dz/dt = ACt-t;) P (t-t) M2, .. (t-t,)
(2-2)

Now (2-2) can be expressed in the form

d,q . dzy -5 —t. -
T3 (1) —};;;-ui/(t t3) (2-3)

Accordingly, if one (or more) of the
chossen ti is a point at infinity, it
follows ~(2-3) that the associated pni
must equal zero; whence the corresponding
factor (or factors) (t-ty) is to be
omitted in (2-1).

I1I Iransformations Between Planes

Relation Between Conductor Plane and
Complex Potential Plane

To obtain the desired potential
function @(x,y) we turn to explicit
formulation of the complex potential
function P(z) = ®(x,y) + i¥d(s,y) which
maps the upper half-section of the
conductor-plane z of Fig. 3-la on the
rectangle in the P-plane of Fig. 3-1b.

Now in Fig, 3-la the line segment CE and
the line GHIJA are flux lines, hence lines
of constant flux function M; and the line
segments ABC and EFG are equipotential
lines, hence lines of constant potential
function ¢. Let us, then, seek the
function P(z) which carries ABC into a
segment of the line @ = &, and EFG into a
segment of the line ® = ¢, of the P-plane;
and which carries COE into a segment of
the line 4 = 0 and GHIJA into a segment of
the line X = y, of the P-plane.

The values $p and o are determined
by the assigned potential difference
between the conductors and the correspond-
ing charges that appear on the conductors.
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Thus, let the potential difference
between the conductors be Vg3 and the
charge per unit length on each conductor
be Qo3 whence the number of flux lines
per unit length originating on the half-
conductor cross-section EFG and
terminating on ABC is 4#Q0/2 = 21Q0.

Then ®o - "(Do) = 2@ = Vo and ()‘o - 0)
= 21‘00; thus, ‘DO = Vo/2 and ﬁo = 25Q0.
With these relations established, we turn
now to explicit formulation of the
complex potential function P(z),
effected in several steps.

This is

Map of P-plane on w-plane

To obtain the desired mapping
function, we first map the rectangle in
the P-plane of Fig. 3-2a on the upper half
of the t-plane of Fig. 3-2b. Accordingly,
the mappin% table, to emgloy this uggful
auxiliary tool introduce by Weber, is
as given in Table 3~1.

Introducing the values of Table 3-1
in (2-2) yields

ap/at 3 .
= A ($+1/k) (t+1) (t-1) (6=-1/%) (3-1)
Integration gives
P = dt +B (3-2)

f/’ T
[(1-t%) (1-k3t2)12

where A and B are constants. We now
%ntroduce the change of variable defined
y
t = (3-3)
which maps the upper-half t-plane on the
rectangle shown in the w-plane of
Fig. 3-2c. From (3-3) we have

[(1-62) (1-k242) 7% (3-})

sn w

dt/dw = en w dn w
and thus
aw = dt/[ (1-t2) (1-k242) P2 (3-5)
Substituting accordingly in (3-2) gives
P=4/dw+B (3-6)
and therefore
P=Aw +B (3-7
To evaluate the arbitrary constants
A and B we make use of the known values
of corresponding points in the P-plane
and the t-plane. From (3-3) we readily

determine the values in the w-plane of
Fig. 3-2c to be as in Table 3-2,

Substituting the values at points E



and C from Table 3-2 into (3-7) gives two
equations, from which we easily find that

A=%0,/K and B =0 (3-8)
Thus, from {(3-7) we have
P = (®/K)w (3~9)

Map of z-plane on t-plane

The next step is to map the z-plane
on the t-plane. We effect this
transformation in two steps, using an
intermediate z'-plane as evidenced in
Fig. 3-3. The values pertinent to the
transformation are those of Table 3-3.

Introducing the values of Table 3-3
in (2-2) yields

dz/dz' = Av(z'-xg) 2(zr=cp)t (20 -xp)"E

~% 1 -1
x (z'-x4)°(z'=C3) (z'-x4)?
. (3-10)
from which we obtain

d_ -, (z1-C1)(z'~-C3)
dz?

[(z'-x{)(z'-xé)(z'-xg)(z'-xﬁ)]%
(3-11)

This transformation maps the upper half of
the z-piane of Fig. %-ga on thgpupper half

of the z'-plane of Fig, 3-3b, the half-
conductors going into the two unequal
segments of the real axis of the z'-plane,
These two unequal segments of the z'-plane
are mapped into two equal segments in the
t-plane of Fig. 3-3c¢, by the well-known
linear fractional transformation:

zt = 5 +; = 2Zg + ;J%b (3-12)
where 25, o and 6 are constants.
Now
9 - dz 2 (3-13)
and from (3-12) we have
dz'/dt = a(t +'9)—2 (3-14)

Substituting in (3-13) for (3-11) and
(3-1k4) gives

(zo+7g~Ci) (Zo*peg~C}

az -
av (6+0)2 [(zo+g3g -x1) (zo+ghg ~x2) ] 2
y 1
[(zo* 5 ~x4) (zo+ 3% —xi) 1%
(3-15)
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and thus a

Zo 'Cé ]

[t+e+ -Z-og"c—f] ﬂ;-fe"i-

Q’.&:Au}.

G

a - I
&0 E e S-S

(Zo ‘Cf )’(Zo “Cé)

hd

[(t+8+ ;;%EEXZO-Xikc-XéXZO-X§20~XA)]%
(3-16)
By making substitutions,
a__. = - - & -
Cl + "'e - ZO_C]!’ C2 e N ZO_C§ (3 17)
- - . __q_— = -
el 6 1/k; st 1/k  (3-18)
and
a -1 e P ¢ T = -
7073 © 8 + -13 pperid <] 1 (3-19)
we obtain

Ata(z0-C$)(20-C3)k

st~ [(zo-xi)(zo—xé)(zo-xs)(zo-x&)]é

) (6=Cy ) ($-C2)
(6+0)2 L (£+1) (£-1) (kt+1) (it -1)) £

{3~-20)
Combining constants gives
(t"cl ) (t"“cz)
$ =1 — (3-21)
(6+8)2 [(1-£2)(1~k"t%) ]
Map of z-plane on the P-plane

If next we introduce in (3-21) the
previously used transformation t = sn w of
(3-3) we can establish the desired
function which maps the conductor z-plane

on the complex potential P-plane. Now
dz . dz dt -
dw - dt aw (3-22)

Substituting in (3-22) from (3-4) and
(3-21) and then replacing t by sn w from
(3-3) gives '

4z
dw

(sn w-Cy)(sn w-C3)

(sn wt9)?

=A (3-23)

Manipulation of the right-hand side, and
use of the well-known identities

sn?y + cn?w = 1

and

dn?w + k?sn?w = 1



yields
E'
42 =B dn?y + g5 - 1 (3-24)
+Latsn w)(-k®sn w cnzgg-.;n w_dn?y] =en?w dn3y
(B+sn w)
vhere B is an arbitrary constant. In the

transition from (3-23) to (3-24) we have
that

E©2 - K!

CiC2 = 57 —%2K0 2 {3-25)
and
2 -
C, + C, =p LKL T KT = 280 (5 p¢)
E' - k2K'62
After routine transformations of the
Jacobian functions we obtain
4z - 2 E d con wdn w
dw Bldn®w + K? 1+ dw 8 + sn :]
. (3-27)
Making use of the identity
EK' + Et'K - KK* - x/2 (3-28)

in (3-27) gives

E, s .8 cnwdnw,
K 2KK* dw 6 + sn w

(3-29)

g—?.‘: 2 -
o Bldn<w

Integrating (3-29) gives

W
= 2 Bw , xw ,cnwdnyw
Z‘sznrdr X * ok T B en v
+ By (3-30)
where Bo is an arbitrary constant. Inte-
grating in (3~30)
- P en w dn w
2=Bl2n v+ 357 T g +snwl T O
(3-31)

where zn(w) denoctes Jacobi's zeta function,

To determine B and Bp we make use of
the known values of the points E and C in
the z=-plane and w-plane as given in Table
3-4, through coordination by the known
values in the t-plane.

Substituting these values in (3-31)
gives two equations, simultaneous solution
of which yields

By = 03 B = 2hK'/w (3-32)
Substituting (3-32) in (3-31) gives
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Finally, we note that substitution of
w = (KARo)P (3-34)

from (3-9), into (3-33) would yield the
desired expression for the complex po-
tential funetion P. However, inasmuch as
the resulting expression is impllcit,
rather than explicit, it is preferable

to utilize (3-33) and {3-34) as parametric
equations, in w, linking 2z and P.

IV Calculagtion of Capacitance

General Equation for the Capacitance

A general expression for the capaci-
tance of the open-strip line 1s afforded
by (3-9). Substituting the values for the
points A and G of Table 3-2 into (3-7)
gives

P = (2#Q0/K')w (4-1)
Elimination of P and w between (3-9) and
(4-1) gives ‘

(DQ = &[QQK/K' (4‘2)
The capacltance per unit length of the
lines is equal to the ratio of the po-
tential difference between the conductors

to the charge per unit length of the con-.
ductors, thus

C =Vo/Q = 200/Q0 (4-3)
Substituting (4-2) into (4-3) gives
C = K'/usK per unit length of line  (4-4)

Specific Calculation of the Capacitance

In (4-4) the ratio K'/K for a specifi-
cally dimensioned line cannot be assigned
from knowledge of the dimensions. Rather,
we must proceed as follows. First we make
use of the values at the points B and F
shown 1in Figure 3-2c¢c. These points have
coordinates

K + 1v,

wg = (4-5)
where vy and vy are yet to be determined.
Substituting these values, together with
the corresponding values for B and F in
the z-plane as given in Fig. 3-1la in (3-33)
we obtain

wp =K + iny

n + ip, = 22K {zn(K+iv1)+ s (K41, )
+ en(K+iv, Jdn(K+iv, ) (4-6)
9 + sn(K+ivy)
and
-h+ib, = 2?:{ {zn(-K+ivz)+ -2—“}{-15-;(-1(+ivz)
4+-7)

+ cnS—K+iv2%dn§-K+iv22
+ sn(-K+ivy



Equating the imaginary parts of each mem-
ber of (4~6) and (4-7) gives

T gﬁl{:zn(K-Pivl) + 10V

h ix 2KK?
L (K+ivy )dn(K+ivy ) (4-8)
6 + sn(K+ivy)
bbp - 2K! an(-K(iy) + E¥2
h iz )
(4%-9)

+ en (-K+iv,)dn(=K+iv,)
8 + sn(-K+ivy)

We reeall (3-25) and (3-26), rewritten
here for convenience,

E92-K!

CiCs = BT x2K'g2 (4-10)
and
2 -
¢y + ¢, =9 EK ijI'{,GZE' (%-11)

Finally, from (3-3) and (4-5) we have
(4-12)

C; = sn{K + ivy)

and

Ca = sn(=K + 1ivz) (4+=13)

In (4-8) through (4-13) we have six
equations in six unknowns. Accordingly,
solution of these six equations ylelds the
value of the six unknowns Cy, Cz, vi, Va2,
8 and k. These are of such form, and are
so interrelated, that we cannot solve them
directly for k, which would then allow cal-
culation of the corresponding value of
K'(k)/X(k) and thus in turn of C. Rather,
ve must proceed inversely. That 1s, we
must assume a value of capacitance; then
ascertain the geometry of the correspond-
ing line; then through comparison of this
geometry and that of the actual line try
to determine how best to assume a new value
of capacitance; and thus by a repeated
cycle of such computation eventually come
upon the capacitance of the specified line,
A systematic schedule for such procedure
of calculation is given in the following
section,

Procedure for Calculation of Capacitance

1., Assume a value of capacitance

2. Caleulate K/K*' from (L-=k)

3, Obtain k from tables 16, 18, 23

L, Assume a value of 8 and by means
of (4-10) and (4-11) determine C,
and Cz

5. Determine v; and v, from (L-12)
and (4-13) and tables 16, 23

6. Substitute values so obtained int-
(4-8) and (4-9) and solve for the
ratios by/h and b,/h

7. If the values so obtained in step

6 are not those of line whereof
the capacitance is desired—and
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obviously this will usually be the
case—a new value of § must now be
chosen and the procedure repeated

from step 4 onwards.

8. If eventuslly it is found that no
value of § will yleld the correct
geometry, a new value of capaci-
tance C must be chosen and steps 1
through 7 repeated.

9. By a repeated cycle of computation
based on steps 1 to 8, the desired
C can eventually be obtsined.

Obviously, in this schedule of calcu-
lation, as in any schedule used in trial
and error, judicious choice of assumed
values will shorten the labor of calcu-
lation, ’

In performing the actual caleulation,
the work involved will be considersbly
greater than evidenced by mere recital of
the steps of the procedure. Thus, in step
3, it 1is normally necessary to interpolate
in available tables of K/K!'; the number of
forward differences to be used depending
upon the desired accuracy of the caleula-
tion. Again, step 5 cannot be carried out
directly because there are no pertinent
tables of the elliptic functions for com-
plex arguments. Accordingly, it is neces~
sary to assume values for v; and v, in
(4-12) and (4-13), carry out the ealcula~
tion for C; and C,, and repeat until the
desired values of vy and v, are obtained.
In this step also, it is necessary to
interpolate values iIn the used tables of
real elliptic functions. Such interpola-
tion is a laborious and time consuming
process; thus, in the latter of the two
calculations, carried out in detail as dis
cussed below, it proved necessary to use
up to and including fifth differences in
Gauss' forward formula for interpolation,

Pinally, a very considerable handieap
in effecting the schedule of computation
is the lack of tables of elliptic funciions
tabulated for values of argument between
89° and 90°, as required for computation
in the range of most technical interest —
namely, whereof the ratios of b;/h and
bo/h are grester than 2. No doubt it is
because of this lack of tables that
Pslmer,'? who computed a curve for the
capacitance of a strip-line with conductors
of equal width, terminated his curve at a
b/h ratio of 2.

Rigorous Caleulation of the Capacitance of
Two Specially-Dimensioned Lines

To check the accuracy of the analysis
as a whole, to evidence that the scheme of
calculation advanced can be effected, and
to gain insight into the actual labor in-
volved, capacitances of two specifically-
dimensioned lines were computed. Assuming



C = 0.,12733 statfarads per centimeter and
proceeding as mentioned in steps 1 to 6 of
the previous section, a line of ratilos

bi/h = 1,2633 bp/h = 0,2959 (4-1k4)
was obtained.

To ascertain by what factor the ex-
perience gained in the first computation
would enable shortening the time required,
calculation was carried through for a
second line. A value of C = 0.275314 stat-
farads/centimeter yielded ratios of

by/h = 2,79183 by/h = 1,80635 (4-15)

The calculations pertinent to this example
are to be found in Appendix I,

A guasi-corroboration of the correct-
ness of these values is afforded as follows.
A line of ratios b;/h and by/h will have a
value intermediate between those lines of
equal width of conductors whereof b/h =
by /h and a second like line of b/h = by/h.
For a line with conductors of equal width
and a ratio of b/h = 1.8, Palmer's'® curve
yields C = 0,24 statfarads/centimeter. By
extrapolating Palmer's curve to b/h = 2,8,
a capacitance of 0,32 statfarads/centimeter
is obtained. Averaging these two values
gives 0.28 statfarads/centimeter. This
value is essentially equal to the value of
C = 0.27531478 obtsined by rigorous calecu~
lation. Accordingly, while such agreement
cannot be taken as an absolute check on the
correctness of the rigorous calculation,
it does indicate that no gross errors occur
in calculation of the two values found.

Practical Calculation of Capacltance

Inasmuch as it required a total of
thirty hours to calculate the geometry of
the second conductor corresponding to an
assumed value of C, it would require a pro-
hibitive amount of time to carry out the
repeated cycles of such computation neces-
sary to obtain the capacitance of a line
of specific geometry—even after gain of
considerable experience in such caleulation,
Obviously, then, what 1s most deslired is a
set of universal curves, say a family of
curves of C as a function of by/h for vari-
ous values of by/h.

Points for these curves could be
found by initial assumption of C and calcu-
lation of corresponding values of b;/h and
b,/h as is done in the example of the previ-
ous section. However, where a plenitude of
skilled computing assistance 1s lacking,
as is often the case, a more feasible ap-
proach to ecomputation of the desired values
of capacitance 1s by use of the method of
subaress. Determination of the capacitance
by this theory entails only simple algebra-
ic manipulation, and the numerical computa-
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tion can be effected in s routine manner
on availsble IBM equipment. Accordingly,
we turn to setting out the theory under-
1lying the mode of computation.

¥V Method of Subareas

Fundemental Theory

The essential theory is to be epito-
mized as follows, Taking first the case
of two cylindrical conductors, let each
be considered as comprised, either exactly
or approximately, of longitudinal sub-
strips of area Ay, of number (i =1, ...,
n) for the first conductor and (1 = n + 1,
ooy n + n') for the second, which are:

(i) Of such small "width" wy (dis-
tance measured tangentially along
the perimeter of cross-section)
by comparison with the total

" length of the corresponding pe-
rimeter that the charge density
04 is essentially constant over
each subarea Aj;

Of such shape that assumption of
uniform charge density ¢4 enables
simple calculation of potential
produced by the uniformly dis~-
tributed charge (per unit length)

= gywq on Ay
8% sucg éimensiéns and shape that
if the subarea Ay were alone in
space, the potential ¢}j produced
by Ay over that part of "shape
whicé is actually occupied by
another subarea Ajy 1s essenti»lly
constant nd similarly for the
potentiai 11 produced by Ai over
itself,

(i1)

(111)

Under these assumptions esleulation
proceeds as follows. By (1), ¢} produced
over As by the charge qj on A4 g pro-
portiogal to 44, whence ®135 = kijqi. Hence
by (1) and (111} the total®potential over
Aj is ntn’

n+n'
o, = o .
b =7 1
a linear equation in the n + n' unknowns
=1, ey n + n'), Proceeding thus
to form the total potential over esch sub-
area ylelds the set of n + n' equations

n+n!

® = kq
7 g

(3 =1, v.o, n + n')., A well-known theo-
rem in electrostatic theory states that

the potential is constant over a charged
conductor whereon the charge 1is in equi-
librium. Imposing this condition over each
each of the two sets of subareas compris-
ing two conductor surfaces at potentials

®, and O3 yields



149 (3=1, ..., n)

and
nin'
®4 = Ei—l kijqi (3’—'1’1"’1, veey n+n').

An additional equation stems from the fact
that lnasmuch as the total charges

n n'
Q =2 _q, and Q3 =3 ay
i=1 i=n+l
on the two conductors are of equal magni-
tude but of opposite signs, the algebraic
sum of the charges on the individual sub-~-
strips is zero, thus

n+n'’
= 0.

Solving the total set of (n+nt+l)
equations for the q, in terms of (¥,- ¥3)
yields a set of val&es for the charge q
over the subareas. In turn, these furnlsh
an approximate value the charge Q through

n n+n'

i=n+1

Qo = ay or Q4 Q-

2__
1=1

Finally, the approximate value of the de-
sired capscitance follows from C=Q/(®o-®3),
wherein the 93, and hence Q, are expressed
in terms of (®o~®§) whieh cancels out on
taking the ratio. Obviously, knowledge of
charge density o over the two conductors

is furnished by the known values of the Q.

Possible Simplifications

It commonly hapnens that the actual
number of equations that must be solved is
less than n+n', Thus, if—as is usual—
the configuration of conductor cross-
sections is one such that one or more lines
of symmetry exist with respeet to which
one~half of the configuration is the virtu-
al image of the other half, the charge .
densities at two Image points are on the
same or different conductors. If the lat-
ter is the case, the line of symmetry is
also an equipotential line (a cross-section
of the corresponding equipotential plane),
and can be assigned the reference value®
= 0; whence it then follows that the two
conductors are at equal and opposite po-
tentlals, thus ¢, = -®§., Obviously, use
of the charge relatlonship reduces the num-
ber of equations to be solved to less than
the number of subareas (n+n'); namely, to
the number N of unknown q4. Again, use of
the potential relation—when it exists—
enables replacement of ®§ by -Op and simpl-
fies the solution of the equations some-
what by enabling direct solution of the g4
in terms of ®, rather than (®,-®3), thus
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eliminating » certsin amount of otherwise
necessary algebraic manipulation.

Application

It is evident that the capacitance
and charge distribution can be obtained to
any desired degree of accuracy by taking
subareas of sufficiently narrow width. Of
course, the labor involved in manual solu-
tion of the set N linear equations increas-
es rapidly with N, However, as evidenced
by two examples given in a later chapter
of this paper, surprisingly accurate values
of capacitance and charge distribution can
be obtained by use of small N, particularly
if the two-conductor system possesses one
or more geometric symmetries. Moreover,
the ease with which a set of equations of
high N can be solved by automatic ealcula-
ting equipment (say by IBM punched-card ma-
chines or a Consolidated Engineering Corpo-
ration linear equation solver) and the gen-~
eral availability of such equlpment and ac-
companylng experienced aids afford s ready
means of effecting actual numerical solu-
tion to a high degree of accuracy if such
is required in a particular problem.

In conclusion, it is to be noted that
although in this paper attention is con-
fined to a two-conductor system, obvious
extension and application of the basie the-
ory enables determination of the capaci-
tances znd charge distribution associated
with an arbitrary number of elecirified
parallel cylindriecal conductors: thus, of
a high-frequency transmission line whereof
each of the two major conductors is com-
prised of several paralleled subconductors.

Derivation of ithe Basic Subasres Equstions

for Uniformly-Charged Substrips

We advance here the basie equations
for uniformly-charge substrips which we
shall use in comgutation of the open-strip-
line in Section 6. '

With respect to Fig. 5-1, let g' be
the uniformly-distributed charge per unit
length of line, E, the radial component of
the electric field intensity at radial dis-
tance r from the line charge, and ®(r) the
corresponding potential. Then, in unration-
alized c.g.s. units

-3%/dr = E, = 4xq'/2ar = 2q'/r (5-1)
and
0:—£Erdr=21noo - 2 1n r)q'
(5-2)

With respect to Fig., 5-2, let q be
the uniformly distributed charge per unit
of length of strip (whence o= q/d 1is the

uniform charge densityi %ﬁ the radial com-
ponent of electric fie d tensity at



radial distance r from the center of the
incremental strip of width dx (located dis-
tance x from the center of the strip) due
to the charge gdx on the incremental
strip, and © the corresponding potential.
Then by (5-2)

4@ = (2 In ® -~ 2 1n r)dx (5-3)
and in that

r = (R? + x2 ~ 2Rx cos 9)5
we have from (5-3) that

¢ = Qf/g(q/d)[Z In ® (5-4)
-0
- 2 1n(R2+x2~2Rx cos e)é]dx

The following three cases are of par-
ticular interest:

1. If R = 0, we have from (5=k4)
?=(2+2In®=-21nd+ 21n 2)q (5-5)
(A + 3.386)q (5-6)
wherein A =2 In 0 - 2 1n d.

2. If e= 0%, we have from (5-4)

® =[2+21n w+ dy* (R-do)1n(R-do)-dg"
(R+do)1n(R+do) Iq (5-7)
wherein do =.4/2.

3. If 8 = 90°, we have from (5-4)
®=[2+ 2 1n o0~ 1n(R2+d}) ‘

-2(R/do)tan *(do/R) Jq (5-8)

As a useful approximation, we note
that if R>>d, then (5-7) and (5-8) reduce

to
® = 2(1n % - 1n R)q (5-9)

Fig. 5-3 evidences two conductors under
which the approximation of (5-9) is valid.
In subarea analysis of the open-strip line,
such conductor 1s divided into a number of
narrow substrips, when although the total
conductors are located close together,

most computation is effected under the con-
dition of Fig. 5-3b, and hence (5-9) can
effectively be utilized in calculation,
‘thus considerably simplifying the computa-
tion otherwise necessary if it were neces-
sary to use (5-8) in toto. .

VI Results of Method of Subareas

First Approximaticn
If each strip were considered as com-

prised of one subares, as in Fig. 6-1,
then by (5-5) and (5-9) the approximate po-
tential at the center of the upper stripis

®, =(2+21nw=-21nd, +2 1n 2)
+ 2(1n o = 1n D)(-q) (6-1)
(2+21n2-21nd, +2 1n D)q

The potentlal at the center of the lower
strip is

e,

(2+21n©=-21nd; + 2 1n 2)(~g
+ 2(1n o - 1n D)q- (6-2)

(=2 ~21n2+21nd; -2 1n D)q

The first approximation of the capacitance
of the strip line is

C = q/(9-%y) = 1/[6.772 + 2 1n(D/a;d,) ]
statfarads/centimeter
Second Approximation
Consider each strip as comprised of
two equal subareas, as in Fig., 6-2, Be-
cause of symmetry, it 1s necessary to find
the potential at the center of only one
subarea of each strip. The approximate
potential at the center of the left subarea
of the upper strip is
®; =[{2+ 21In ®=-21n(d/2) +21n2k
+ql[2 1n - 2 1n(d,/2)]
~ql2n®w-21nr] =-q[21ln ©- 2 In ry

=q[2 - % 1n(dy/2) + 2 1n 2

(6-3)

+21lnr +21n ry (6-4)

The approximate potential at the center of
the left subares of the lower strip is

®=[2+ 2 1n - 2 1n(4;/2) + 2 1n 2(-q)
-q{2 In @ - 2 1n(d,/2) ] (6-5)
+ql2ln@-21nr]+ql21n o= 2 Inr,y)

Hence
®;-®; =qk-41In(da/2) + 4 1n 2 + 4 In r,
+21Inry +21nry -4 In(d,/2)] (6-8)

Accordingly, the second approximation is
C = 2q/(¢2 - 01) (6'7)
Fourth Approximation

The second approximation evidences all
details of the manner in which the compu-
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tation of the capacitance 1s effected.
actuality, in caleculating C for plotting
the universal curves, only fourth approxi-
mations (8 subareas per strip) were used.
Feng? has shown that such subdivision
yields quite accurate values of C. Fourth
approximation yields a set of ten simul-
taneous equations, of which one stems from
the potential difference between the con-
ductors, another stems from the fact that
the algebralc sum of the charges on the

two conductors is zero, and the other

eight stem from formulation of the potenti-
al equations of the subareas., Thus for a
d;/D ratio of 8 and a d,/D ratio of

2 as evidenced in Fig, 6-3, the following:
set of equations results:

Q=¢2 "01

In

0 =qy +q2 +q3 +qy - g5 =
5.039%aq,
+ 0,575%qy +
+ 2,2229q, +
1.9616q; +
+ 1,9616qy +
+ 2,2761qy +
0.9400q; +
+ 4,1588qy +
+ 2.3253q7 +
0,.5754qy +
+ 8.931h4qy +
+ 2.3536q; +
5.0685q; -
- 5.1661qy +
+ 4,6050q, +
3.8091qy -
- 3.9589qy +
+ 2,7726q5 +
2.2229qy -
- 2.3536qy +
- 1.1890q, +
1.1931qy -
- 0.4613qy +
+ 1.3862q, -

46 ~ 47 ~ 48
1.9616q, + 0.9400q;
5.0695q5 + 3.8091qs
1.1931qs
5.71251, +
5.1176q5 +
0.8333as
2.7726q, +
5.1500qg +
5.840qg
1.,9616q, +

0 ='¢2 +

+

2.7726q3
3.8839q¢

6 . 7342(13
3.9339q¢

4.1588q3
5.1661q5 + 3.9589q¢
0.4613qg
5.1176q, -
0.5056q5 +
4.9698qs
3.8839q2 -
3.5836q5 -
3.5834qs
2,2761q, -
4.6050q5 +
1.3862q3
0.8333q2 -
4,9698q5 +
3.3862qg

5.1500q3
3.5836q¢

3.9339q3
0.1674qs
0 ==¢, - 2.3253q3
2,7726q¢

0.5840q34

3.583k4q
(6-8)

Solution of the ten equations of (6-8)

yields
q1 = 0.0678¢; q2 = 0,0355¢; q3 = 0.0313¢;
as = 0.0297®; q5 = 0.0211¢; q¢ = 0,0211e;
q7 = 0.04%43®; g3 = 0.0777¢. (6-9)
Now

C=Q/¢=2(ay *q2 *a3 + qu)/ (@& - 01)
Substituting accordingly in (6-10) yields
(6~11)

In similar fashion, values of the
capacitance were calculated for strip-
lines over a range of geometry to be en-
countered in practice. These values are
tabulated in Table 6-1.

C = 0.3286 statfarads/centimeter

Universal Curves

Fig. 6-i, wherein the curves are plot-
ted from the values of Table 6-1, furnishes
the desired set of universal curves. These
afford by inspection the capacitance of any
open-strip line to be encountered in prac-
tice, thus obviate the necessity of lengthy
computation such as discussed in Section IV,

Corroboration of Rigorous Theory and Sub-

area Computation

In addition to the capacitances tabu-
lated in Table 6-1, the capacitances of the
two strip lines of the illustrative ex-
amples of Section IV were also obtained by
subarea caleulation. Table 6-2 comprises
tabulation of corresponding values,

As evidenced, the values of capaci-
tance obtained by subarea calculation are
in close agreement with the values cslcu-
lated from the exact equation

C = K'/4sK (6-12)

This agreement not only evidences the cor-
rectness of the results stemming from both
modes of computstion, but reaffirms the
consliderable value of subarea theory as af-
fording a simple, straightforward means of
caleculating the otherwise analytically-
difficult problem in potential theory.

Critical Comment on
Desgign

We now turn our exact solutions to in-
vestigation of the accuracy of the work of
Assadourian and Rimai,? who formulated the
only equations hitherto available for the
design of open-strip transmission lines. As
stated in the introduction, these authors

tions Noy Used for

0L



do not calculate actual values of capaci-
tance or characteristic impedance for the
open-strip line, but only upper and lower
bounds. The upper bound occurs when by =
®; the lower bound when b; = b,. Their
values for the upper bound are calculated
from approximate equations given by Maxwell
and Thomson. They do not specifically
state the equations used for calculation

of the values for the lower bound.

To check the correctness of their
lower bound, we can use the values ob-
tained for the case of by = by as calculat-
ed in an esrlier sectlon, or we can obtain
exact values from the papers by Palmert?
and Magnus and Oberhettinger.® We choose
the latter. We can obtaln exact values
for the upper bound by = © by use of the
obvious fact that the value of capacitance
for such is twice the capacitance of an
open-strip line of equal strip widths, b =
b, and ratio b/h' = b,/2h, as 1ndicated in
Fig. 6-5. Exact values of the upper and
lower bounds, so computed and tabulated in
Table 6-3, furnish the curves of Fig. 6-6.
Here, as defined by Assadourian and Rimai,

Zo/28 = b/4=xhC (6-13

Fig. 6-6 indicates that, as stated in Sec-
tion I, the curves of Assadourian and
Rimgi yleld values some 25 per cent too
high—vwhich error stems from the fact that,
in virtue of the way they are derived,
Thomson's and Maxwell's equations, em=—
ployed by them, yleld poor approximations,

Finally, it is of interest to evi-
dence that the subarea values tabulated in
Table 6-1 are well-encompassed by the ex-
act upper and lower bounds. Such is evi-
dent in Fig. 6-7, whereof we have plotted
the characteristic impedance, Zo, rather
than C, thus simulatneously obtaining
curves useful in open-strip line design.
For air,

2 =h4x 10 henry/meter (6-14)
e = (1/36x)x 10" farad/meter (6-15)
and thus
Zo = (L/C)% = (ns)?/c = 30/C ohms  (6-16)

where the value of C is in statfarads/
centimeter length of line. The several
values which fall slightly below the lower
bound are for the more disparate plate-
widths, as 1s to be expected. To obtain
the more accurate values bringing them
above the lower bound would require the use
use of at least an eighth approximation,
easily obtained if the corresponding neces-
sary card decks are avallable.

Finally, we note, as_is to be exgect-
ed, that those values of Zo calculate
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from the rigorous values of C obtained in
the two 1llustrative examples of Section
IV fall between the upper and lower
bounds, as they should.

VII Summary

1. Exact expressions for the capaci-
tance per unit length of line, C, and for
the complex potential P(x,y) of the open~-
strip UHF transmission line have been de-
rived. These ensble calculation of the
electrical parameters of the line, as de-
tailed in Section II,

2, However, as evident from the pro-
cedure given in Section IV and from the
example presented in the Appendix, exact
calculation of the characteristic imped-~
ance of a speclally dimensioned open-strip
line (from Zo = 30/C) while possible, is
extremely lengthy: and numerieally labori-
ous to effect, since computation must pro-
ceed in an inverse, rather than direet,
calculation,

3. Accordingly, a set of universal
curves, plotted for wvalues obtained by sub-
area calculation, have been effected.These
yield the characteristic impedance of open-
strip lines over a range of parameters
likely %o be encountered in practice.

L, Comparison of the exactly-deter-
mined upper and lower boundary curves show
that the design equations now in use not
only give values within certain broad lim-
its but that both limits are about 25 per
cent too high.

5. Comparison of numerical labor in-
volved in effecting computation of C by
the rigorous expression C = K'/4xK and by
subarea calculatlion evidences the consider-
able usefulness of the latter method as af=-
fording values by routine procedures using
IBM ezuipment.

. The general correctness of both
the exact calculations and the subarea cal-
culations are confirmed by the essential
identity of the values obtained in Sec-
tions IV and VI by both methods for two
specially dimensioned lines,

Appendix 1
Calculation Typical of Determination of
Specifically-Dimensioned Line

According to step 1 of Section IV, we
assume a value of capacitance, say C =

0.275314 statfarads/centimeter. Then from
(4-4) we have

C = 0.27531% = K/ UK (A-1)
which yields

K/K' = 4xC = 3.45970 (a-2)



Obverse interpolation in a table of K/K!
gives k as

kx = 0,0174524
and (A-3)
k2 = 0,000304586

Direct interpolation in tables of K and E
yields

K = 1.57092
K' = 5.43491 (a-})
E' = 1,00075

Per procedure stated in steg L4 of Sec-
tion IV, we next assume a value Tfor the
parameter ©; in this case preliminary in-
vestigation indicates as a reasonable

choice
167,664
28111.37

(4-5)
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Next, solution
gives

k2K 14K -2F¢
Cal® =gz

0251 -~ K¢

- C2) =z (A6

Substituting from (A-3), (A-4), and (A-5)
in (A-6), we obtain '
c% + 12,6483C, - 617.7046 = 0
Solution of this quadratic equation gives
C, = -31.9650, 19.3166 (A-7)
Because of the nature of (3-25) and (3-26)
(A-7) yields solutions valid for both C;
and Cp, Let, then,
-31.9650 (A-8)

C; and vy are related by (4-12), re-
peated here for convenience,

01 = and C2 = 19‘3166

C; = sn(K = ivy) (4-9)
Now dn(v, k')
- AV, o -
sn(K+iv1) = cnz(V1,k')+k28n2(V1,k') (A 10)

Aceordingly, the value of vy must be ob-
tained by trial and error process: assum-
ing a value for v;, solving for C;, making
a second choice of vy, solving for C,, and
so on. This caleculation for vy, proves to
be very lengthy, because normslly the val-
ue of v; required to satisfy (A-9) will

1ie between given values in the separate
tables of dn, cn and snj whence the trial
of vy results in necessity of interpolation

in each of the three tables. However,
after repeated cycles, the value of v,
found to satisfy (A*9S was

v, = 4,24695 (A-11)

of (3-25) and (3-26) for Cp

This same lengthy process, repeated for v,
yields value

vy = 3.68366 (a-12)

Examination of (4-8) and (4-9) evi-
dences that we must yet obtain the value
of zn(K+iv, ) and zn{-K+iv,). Now

zn(K+iv) = i[-zn(é,k')
I 4 dngv,?k'zsngvl,k'z
2KX* cn(vy ,k?
_ kzsngv,,k'zdngv,,k'z
en(vy k') en<(vy k' )+k“sn*(vy k' )}

(A-13)

From (A-13) we note that the remaining
value to be calculated is zn{(vy,k'). No
published tables of this function are
available in the range accruing to the
present problem. 2zn(vy,k') can be, and
was, found through use of the relationship
(A-14)

L]
zn(vy , k') = E(vy,k') - vi%v

where E(vy,k') is a well-tabulated function.

Finally
tained into

substitution of values so ob-
{4-8) and (4-9) yield

by/h = 1.80635 ba/h = 2,79183  (A-15)
If, as would be the case in practice, we
were seeking the capacitance of a specifi~
cally-dimensioned line, we would now com=-
pare these values with that of the line;
commonly, they would not agree and we
would start anew with a second value of 0
or C, and so repeat this lengthy cycle of
computation until agreement was attained.
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TABLE 3-1

Point A C 0 E G H,d

P-plane -, + i21Q, ~ffo + 10 O fo +i0 @+ i2MQ, O + i2mQo

angle 1l T2 /2 0 /2 /2 o}
Py 1/2 1/2 0 1/2 1/2 0
t-plane -1/k -1 0 1 1/k 4+
TABLE 3-2 TABLE 3-4
Point A ¢ E G Point E c
t-plane -1/x -1 1 1/k z~plane h -h
w-plane =K + iK?® -K XK - K + iK# t-plane 1 -1
P-plane ~Bo + 120Q, B 2o Bo + i2nQ, weplane K -K
TABLE 3-3
Point A B c E F G H,d

z=plane <h #i0 -h +3iby ~h +30 h+310 h+iby h+310 2o

Bim /2 =T /2 n/2 -1l /2 21
o 1/2 -1 1/2 1/2 -1 1/2 2
zt-plane xf, cy ’ x4 x4 ¢! x! + @
B TABLE 6-3
TABLE 6-,1 7zt
bo/h b,/h B, = b, b =
b1/, T 2 I 8
0.15 0.171 ———
1 0.1656 0.2557 0.4337 0.7791 0.3 0.266 0.171
2 0.2006 0.3067 0.L914 0.8794 0.5 0.338 ——
b 0.2272 0.3286 0.5236 0.9L82 0.6 — 0. 266
0.3L0L 0.5325 1.0 _—— 0.338
1.1 0.488 —
TABLE 6-2 2.0 0.610 -—-
by/h bs/h Exact Cap. Approx. Cap. % Error 2.2 - 0..488
L - 0.610
1.2633 0.2959 0.1273 0.1256 1.34 5 0.742 .
2.7918 41.8066 0.2753 0.2715 1.38 10 0.795 0.742
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